Al Infrastructure Water Risk Assessment Workbook

A Comprehensive Framework for Evaluating and Mitigating Water-Related Risks in Al Operations

Version 2.0 | August 2025

Executive Overview

This Water Risk Assessment Workbook provides a systematic approach to evaluating your organization's water-related risks associated with AI infrastructure. With AI operations consuming billions of gallons annually and regulatory requirements intensifying, this assessment tool helps organizations:

- · Quantify water risk exposure across all facilities
- Identify critical vulnerabilities before they impact operations
- Prioritize mitigation investments based on risk and ROI
- Ensure regulatory compliance across jurisdictions
- **Build resilience** for water-constrained futures

How to Use This Workbook:

- 1. Complete each assessment section for every facility
- 2. Calculate risk scores using provided frameworks
- 3. Identify priority areas for intervention
- 4. Develop targeted mitigation strategies
- 5. Track progress with quarterly reassessments

Section 1: Organizational Profile

Company Information

Field	Details
Organization Name	
Assessment Date	
Assessment Lead	
Review Cycle	□ Initial □ Quarterly □ Annual

AI Infrastructure Overview

Metric	Current State	2025 Projection
Total Data Centers		
Total IT Load (MW)		
Al Workload Percentage	%	%
Annual Water Consumption (gallons)		
Water Costs (annual)	\$	\$
Generative AI deployment		
Multi-agent systems		
ML model training		
Edge AI computing		
Other:		
Water Strategy Maturity:		
Level 1: Reactive (no monitoring)		
Level 2: Monitoring (basic metrics)		

Section 2: Facility-Level Risk Assessment

■ Level 3: Optimizing (active management)

■ Level 5: Leading (zero-water operations)

■ Level 4: Transforming (advanced solutions)

Instructions

Complete this assessment for each data center facility. Aggregate scores will determine enterprise risk profile.

Facility Information

Field	Details
Facility Name/ID	
Location	
Commissioned Year	
IT Capacity (MW)	
Current PUE	
Current WUE (L/kWh)	

Risk Scoring Matrix (100 Points Total)

1. Water Stress Level (20 points) Extreme water stress (>80% baseline water depletion) - 20 points ■ High water stress (40-80% depletion) - 15 points ■ Medium-high stress (20-40% depletion) - 10 points Low-medium stress (10-20% depletion) - 5 points ■ Low stress (<10% depletion) - 0 points 2. Climate Projections (10 points) Severe drought risk increasing - 10 points ■ Moderate drought risk - 7 points Stable precipitation patterns - 3 points Improving water availability - 0 points 3. Competing Water Demands (10 points) Critical competition (agriculture, residential) - 10 points High competition - 7 points ■ Moderate competition - 5 points Low competition - 2 points Minimal competition - 0 points Geographic Risk Subtotal: _____/ 40 B. Infrastructure & Technology Risk (30 points) 4. Cooling Technology Age (15 points) >10 years old, no upgrades - 15 points ■ 5-10 years, minimal updates - 12 points ■ 2-5 years, some optimization - 8 points <2 years, modern systems - 4 points</p> Next-gen liquid cooling - 0 points 5. Water Dependency (15 points) ■ 100% evaporative cooling - 15 points >70% water-based cooling - 12 points ■ 40-70% water cooling - 8 points <40% water cooling - 4 points</p> Zero-water cooling - 0 points

Infrastructure Risk Subtotal: _____/ 30

A. Geographic & Environmental Risk (40 points)

6. Regulatory Exposure (10 points) Non-compliant with current regulations - 10 points ■ At risk of non-compliance - 8 points Marginally compliant - 5 points ■ Fully compliant, no buffer - 3 points Exceeds all requirements - 0 points 7. Water Rights & Availability (10 points) ■ No secured water rights - 10 points Limited/contested rights - 8 points Adequate current rights - 5 points Secured long-term rights - 2 points Multiple water sources - 0 points 8. Business Continuity Planning (10 points) ■ No water contingency plan - 10 points Basic plan, untested - 7 points Documented plan, partially tested - 5 points Comprehensive plan, regularly tested - 2 points Proven resilience systems - 0 points Operational Risk Subtotal: _____/30 Total Facility Risk Score: ____/100 **Risk Level Interpretation** • 70-100: Critical Risk - Immediate executive action required • 50-69: High Risk - 6-month mitigation plan essential **30-49**: Moderate Risk - 12-month optimization roadmap 10-29: Low Risk - Continuous improvement focus • **0-9**: **Leading Practice** - Maintain competitive advantage

Section 3: Water Consumption Analysis

C. Operational & Compliance Risk (30 points)

Current State Metrics

Monthly Water Usage Tracking

Month	Water Usage (gallons)	WUE (L/kWh)	Cost (\$)	YoY Change
January			····	%
February			····	%
March				%
April				%
May				%
June				%
July				%
August				%
September				%
October				%
November				%
December				%

Source Type	% of Total	Quality Issues	Reliability Risk
Municipal water	%	□ None □ Minor □ Major	□ Low □ Med □ High
Well water	%	□ None □ Minor □ Major	□ Low □ Med □ High
Recycled water	%	□ None □ Minor □ Major	□ Low □ Med □ High
Rainwater harvest	%	□ None □ Minor □ Major	□ Low □ Med □ High
Other:	%	□ None □ Minor □ Major	□ Low □ Med □ High

Al Workload Impact Analysis

Al Workload Type	% of Compute	Water Intensity	Monthly Impact (gallons)
Training large models	%	□ High □ Med □ Low	
Inference/production	%	□ High □ Med □ Low	
Multi-agent systems	%	☐ High ☐ Med ☐ Low	
Edge Al processing	%	□ High □ Med □ Low	
Development/testing	%	□ High □ Med □ Low	

Section 4: Regulatory Compliance Checklist

Global Requirements Status

European Union

Data Collection Ready	(500kW+ facilities)
-----------------------	---------------------

■ **Annual Reporting Prepared** (Due May 15)

■ Heat Recovery Docum	ented				
■ CSRD Compliance (If a	pplicable)				
United States					
☐ State Requirements M	apped				
☐ California SB 58 Comp	oliance (If applica	able)			
Local Permit Complian	ice				
■ Water Rights Docume	ntation				
■ EPA Reporting (If requi	red)				
Asia-Pacific					
☐ Singapore WUE Stand	ards (≤2.0m³/M\	Wh)			
☐ China Efficiency Requi	i <mark>rements</mark> (<2.5 L	₋ /kWh)			
Local Water Authority	Compliance				
Environmental Impact	Assessments				
Documentation Readi	ness				
Document Type	Status		Last Up	odated	Next Review
Water usage reports	□ Comple	te 🗆 Partial 🗆 No	one		
Regulatory filings	□ Comple	te 🗆 Partial 🗆 No	one		
Audit documentation	□ Comple	te 🗆 Partial 🗆 No	one		
Sustainability reports	□ Comple	te 🗆 Partial 🗆 No	one		
Emergency response plans	□ Comple	te 🗆 Partial 🗆 No	one		
Section 5: Technolog	gy Readiness	s Assessme	ent		
		-•			
Current Cooling Infras	tructure Evalu	ıation			
Primary Cooling Systems	S				
System Type	% of Capacity	Age (years)	Efficiency Rating	Upg	grade Priority
			□ Poor □ Fair □ Go		liah □ Med □ Low

System Type	% of Capacity	Age (years)	Efficiency Rating	Upgrade Priority
Air cooling (CRAC/CRAH)	%		□ Poor □ Fair □ Good	□ High □ Med □ Low
Evaporative cooling	%		□ Poor □ Fair □ Good	□ High □ Med □ Low
Direct-to-chip liquid	%		□ Poor □ Fair □ Good	□ High □ Med □ Low
Immersion cooling	%		□ Poor □ Fair □ Good	□ High □ Med □ Low
Other:	%		□ Poor □ Fair □ Good	□ High □ Med □ Low

■ WUE Metrics Tracked (Required format)

Technical Capabilit	ies:				
Engineering experMaintenance capaIntegration with exMonitoring and coVendor support re	abilities fo kisting inf ontrol syst	r new systems rastructure tems			
Financial Readiness	s:				
Capital budget allo ROI models develo Green financing ex TCO analysis com Risk mitigation fur	oped xplored pleted				
Section 6: Mitig Priority Matrix Based on your asses					
Risk Area	Score	Priority Rank	Mitigation Strategy	Timeline	Budget
					\$
					\$
					\$
					\$
					\$
Technology Trans Phase 1: Quick Win		-			
Optimize existing	cooling p	arameters			
Optimize existingFix leaks and ineff		arameters			
	iciencies	arameters			
Fix leaks and ineff Implement water r Enhance monitoring	iciencies ecycling ng systen				
Fix leaks and ineff Implement water r	iciencies ecycling ng systen				
Fix leaks and ineff Implement water r Enhance monitoring	iciencies recycling ng systen grams	าร	_ savings		
Fix leaks and ineff Implement water r Enhance monitorin Staff training prog	iciencies recycling ng systen grams % water	ns reduction, \$			
Fix leaks and ineff Implement water r Enhance monitorin Staff training prog Expected Impact: 9	iciencies recycling ng systen rams water ture Upg	ns reduction, \$ grades (3-12 mo			

Implement heat recovery
Upgrade water treatment
☐ Pilot liquid cooling
Expected Impact: % water reduction, \$ savings
Phase 3: Transformation (1-3 years)
Full liquid cooling deployment
Zero-water cooling systems
■ Zero-water cooling systems■ Alternative water sources
☐ Alternative water sources

Section 7: Financial Impact Analysis

Cost-Benefit Calculation Framework

Current State Costs (Annual)

Cost Category	Amount	% of Total
Water purchases	\$	%
Water treatment	\$	%
Wastewater disposal	\$	%
Energy for cooling	\$	%
Maintenance	\$	%
Regulatory compliance	\$	%
Total Annual Cost	\$	100%

Mitigation Investment Analysis

Solution	СарЕх	OpEx Savings	Payback Period	10-Year NPV
Optimization	\$	\$	years	\$
Hybrid cooling	\$	\$	years	\$
Liquid cooling	\$	\$	years	\$
Zero-water system	\$	\$	years	\$

Risk-Adjusted Returns

Risk Factor	Probability	Impact	Mitigation Value
Water restrictions	%	\$	\$
Price increases	%	\$	\$
Regulatory fines	%	\$	\$
Reputation damage	%	\$	\$
Operational disruption	%	\$	\$

n Planning

Section 8: Implementation
90-Day Action Plan
Week 1-2: Assessment Phase
 Complete facility assessments Compile water usage data Map regulatory requirements Identify quick wins Engage stakeholders
Week 3-4: Planning Phase
 Prioritize interventions Develop business cases Select pilot projects Secure resources Create timeline
Week 5-8: Execution Phase
Implement quick winsLaunch pilot projectsBegin procurementTrain teamsEstablish monitoring
Week 9-12: Ontimization Phase

Measure results
Adjust approaches
Scale successes
Document learnings
☐ Plan next phase

Success Metrics Dashboard

KPI	Baseline	Target	Current	Status
WUE (L/kWh)				□ On Track □ At Risk □ Behind
Water consumption				☐ On Track ☐ At Risk ☐ Behind
Cost savings	\$	\$	\$	□ On Track □ At Risk □ Behind
System uptime	%	%	%	□ On Track □ At Risk □ Behind
Compliance score				□ On Track □ At Risk □ Behind

Section 9: Stakeholder Engagement Tracker

Communication Matrix

Stakeholder Group	Engagement Level	Key Messages	Frequency	Owner
Executive Leadership	□ High □ Med □ Low			
Board of Directors	☐ High ☐ Med ☐ Low			
IT Operations	□ High □ Med □ Low			
Facilities Team	□ High □ Med □ Low			
Finance	☐ High ☐ Med ☐ Low			
Sustainability	□ High □ Med □ Low			
Legal/Compliance	□ High □ Med □ Low			
External Partners	□ High □ Med □ Low			

Change Readiness Assessment

Factor	Score (1-5)	Notes	Action Required
Leadership commitment			
Resource availability			
Technical capability			
Cultural alignment			
Risk tolerance			

Section 10: Progress Tracking & Reporting

Quarterly Review Template

Q[X] 2025 Assessment Summary

Overall Risk Score Change:

• Previous Quarter: _____/ 100

Current Quarter: / 100
Change: points (%)
Achievements:
llenges Encountered:
t Quarter Priorities:

Annual Reporting Framework

Water Sustainability Report Card

Category	2024 Actual	2025 Target	2025 Actual	Variance
Total water consumption				%
Average WUE				%
Water costs	\$	\$	\$	%
Recycled water %	%	%	%	pts
Compliance score	%	%	%	pts

Appendices

Appendix A: Glossary of Terms

- WUE (Water Usage Effectiveness): Liters of water used per kilowatt-hour of IT energy
- PUE (Power Usage Effectiveness): Total facility power divided by IT equipment power
- Evaporative Cooling: Cooling method using water evaporation to remove heat
- **Direct-to-Chip**: Liquid cooling applied directly to processors
- Immersion Cooling: Submerging IT equipment in dielectric fluid

Appendix B: Regional Water Stress Maps

[Include regional maps showing water stress levels for facility planning]

Appendix C: Technology Vendor Comparison

[Include detailed vendor evaluation matrix for cooling technologies]

Appendix D: Regulatory Quick Reference

[Include summary of key regulations by jurisdiction]

Appendix E: Emergency Response Procedures

[Include water shortage response protocols]

Certification & Sign-off

Assessment Certification

I certify that this Water Risk Assessment has been completed accurately and comprehensively based on available data and best professional judgment.

Assessment Lead:	Date:
Reviewed By:	Date:
Approved By:	Date:
Next Assessment Due:	

Contact & Support

For questions about this assessment:

- Internal Sustainability Team: sustainability@[company].com
- Water Risk Hotline: +1-XXX-XXXX
- Executive Sponsor: [Name] [Email]

External Resources:

- EPA Water Sense: www.epa.gov/watersense
- World Resources Institute: www.wri.org/aqueduct
- Green Grid: www.thegreengrid.org

This workbook is proprietary and confidential. Version 2.0 reflects best practices as of August 2025. Regular updates ensure alignment with evolving regulations and technology.